Advanced principal component analysis method for phase reconstruction
نویسندگان
چکیده
منابع مشابه
Principal Component Projection Without Principal Component Analysis
We show how to efficiently project a vector onto the top principal components of a matrix, without explicitly computing these components. Specifically, we introduce an iterative algorithm that provably computes the projection using few calls to any black-box routine for ridge regression. By avoiding explicit principal component analysis (PCA), our algorithm is the first with no runtime dependen...
متن کاملIterative Aggregation Method for Solving Principal Component Analysis Problems
Motivated by the previously developed multilevel aggregation method for solving structural analysis problems a novel two-level aggregation approach for efficient iterative solution of Principal Component Analysis (PCA) problems is proposed. The course aggregation model of the original covariance matrix is used in the iterative solution of the eigenvalue problem by a power iterations method. The...
متن کاملThe quantile method for symbolic principal component analysis
In this article, we present a new quantification method to realize the principal component analysis (PCA) for symbolic data tables. We first describe the nesting property for the monotone point sequences and the correlation matrix by the rank correlation coefficient. Then, we present the object splitting method by which interval valued data table can be transformed to a usual numerical data tab...
متن کاملGeneralized Power Method for Sparse Principal Component Analysis
In this paper we develop a new approach to sparse principal component analysis (sparse PCA). We propose two single-unit and two block optimization formulations of the sparse PCA problem, aimed at extracting a single sparse dominant principal component of a data matrix, or more components at once, respectively. While the initial formulations involve nonconvex functions, and are therefore computa...
متن کاملAn Alternating Minimization Method for Robust Principal Component Analysis
We focus on solving robust principal component analysis (RPCA) arising from various applications such as information theory, statistics, engineering, and etc. We adopt a model to minimize the sum of observation error and sparsity measurement subject to the rank constraint. To solve this problem, we propose a two-step alternating minimization method. In one step, a symmetric low rank product min...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optics Express
سال: 2015
ISSN: 1094-4087
DOI: 10.1364/oe.23.012222